sPHENIX TPC

Overview,
Design, and
Planning

sPHENIX Physics Goals

http://www.phenix.bnl.gov/phenix/WWW/publish/documents/sPHENIX_proposal_19112014.pdf

Jets and Beauty

The physics does not require a TPC, but ...

sPHENIX case for a TPC

... benefits are quantifiable!

- Upsilon
 - $\Delta p/p \sim 1.2\%$ at 4-10 GeV/c
 - improved signal to noise with e-id
- Jet fragmentation
 - $\Delta p/p \sim 1\% p$ at low-z
 - $\Delta p/p \sim 0.2\%$ p at 40 GeV/c
- Jet-medium interactions

Add'nl short/long term benefits

http://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/BES_II_whitepaper.pdf

- Beam Energy Scan 2019-2020
 - Net-proton fluctuations
 - "Instant" soft-physics detector
- Electron Ion Collider >2025

· Detector requirements have significant overlap

http://www.phenix.bnl.gov/phenix/WWW/publish/dave/PHENIX/ePHENIX_LOI_09272013.pdf

sPHENIX and **EIC** TPCs

Requirements

- similar geometry
- similar magnetic fields (1.5 vs. 3 Tesla)
- similar momentum resolution
- similar M.B. trigger rates (~50 kHz)
- higher track densities for sPHENIX (>10x)

Considerations

- location and day-1 beam are uncertain
- TPC's often have >10 year longevity

Nominal sPHENIX TPC Design

R_{outer}, B_{field}, length, fixed by BaBar Magnet

Subject to physics/engineering optimization

TPC Design Tools (Today's Agenda)

- Fast Simulator (Alan Dion)
 - validate with analytic forms
- Hardware R&D
 - Weizmann (Sasha Milov)
 - BNL (Craig Woody)
- Slow Simulator (Klaus Dehmelt)

Physics Optimization Plans

- Caveat "Everything in a TPC depends on everything else!"
- R_{outer}, B-field, Length can be fixed
- Gas/E-field, R_{inner}, Pad-size
 - highly interconnected
 - vary simultaneously
- Physics Criteria
 - Momentum/Upsilon mass resolution (single track)
 - Upsilon signal-to-noise (Hijing)
 - 2-track resolution (Hijing)

Drift Gas Options

T2K vs P10: a little faster, less diffusion

More Drift Gas Options

ALICE: Ne for ion mobility, CO2 vs. CF4

Fast Simulator optimization plan

- Select representative set of gases and E-fields
 - T2K, P10, Ne-CO2, CF4
- For each gas, vary R_{inner} and pad-size
 - evaluate Upsilon mass with, efficiency, 2-track
 - evaluate single-drift volume for fast-gas
 - map to channel count, estimate cost
 - select optimal parameters for each choice

~2 FTE-months

Hardware R&D plan

- Gas amplification, ion-feed back, electronics
- Test chambers at Weizmann, BNL
 - 1. Test Electronics
 - Acquire experience with SAMPA chip
 - available this summer 2015?
 - Other options? GET = General Electronics for TPC
 - Assume independent chip R&D beyond our reach
 - 2. Gas gain and ion-feedback & mobility
 - 3-GEM and/or MicroMegas
 - 3. Select and tune gas mixture

6-18 FTE-months

Slow Simulator

- Simulate full drift, diffusion, distortion
 - Input measurements from test chambers
 - Improve parameterizations in Fast Simulator
- Electrostatics to design field cage
- Other uses?

Other aspects

- Integration and support
 - Beam pipe impliciations
- Laser system and calibration
- Gas system
- High Voltage
- Cooling
- Monitoring

Feedback

- Optimization plan
- Fast simulator design
- Hardware R&D plans and coordination
- Slow simulator
- Anything we haven't thought of ...